
 



 

 

There are basically six operations: 

 

5. Sorting: Arranging the elements of list in an order (either ascending or descending). 

6. Merging: combining the two list into one list. 

Algorithm: 

 The time and space are the two measure for efficiency of an algorithm.  

 

Complexity of Algorithm: 



 

 

Time complexity is of three types: 

 

 

Asymptotic Notation:  

1. Big Oh Notation: 

 

Definition 

 

For example: 

 



 

 

Array: 

 
linked list. 
 
 



 
 
Length or size of array can be given as 

 
Where LB is the lower bound(first index) and UB is the upper bound(last index) of the 
array. 
 
Representation of Linear Array in memory: 

 

 
Fig: Computer Memory 

 

 
 

 
 

 
 
 
 



Example: 

 
Traversing the Linear Array: 

 
 
 
 
Insertion and Deletion 

element from array. 



 

 
 

 

 

 

Searching: 

Searching is a process of checking and finding an element from a list of elements. Let A be a collection of 

data elements, i.e., A is a linear array of say n elements. If we want to find the presence of an element 

“data” in A, then we have to search for it. The search is successful if data does appear in A and 

unsuccessful if otherwise. There are several types of searching techniques; one has some advantage(s) over 

other. Following are the important searching techniques: 

 

1. Linear or Sequential Searching 

2. Binary Searching 



 

 

 

ALGORITHM FOR LINEAR SEARCH 
Let A be an array of n elements, A[1],A[2],A[3], ...... A[n]. “data” is the element to be searched. Then this  

algorithm will find the location “loc” of data in A. Set loc = – 1,if the search is unsuccessful. 

 

1. Input an array A of n elements and “data” to be searched and initialise loc = – 1. 

2. Initialise i = 0; and repeat through step 3 if (i < n) by incrementing i by one . 

3. If (data = A[i]) 

(a) loc = i 

(b) GOTO step 4 

4. If (loc > 0) 

(a) Display “data is found and searching is successful” 

5. Else 

(a) Display “data is not found and searching is unsuccessful” 

6. Exit 

BINARY SEARCH 
Binary search is an extremely efficient algorithm when it is compared to linear search. Binary search 

technique searches “data” in minimum possible comparisons. Suppose the given array is a sorted one, 

otherwise first we have to sort the array elements. Then apply the following conditions to search a “data”. 

1. Find the middle element of the array (i.e., n/2 is the middle element if the array or the sub-array contains 

n elements). 

2. Compare the middle element with the data to be searched, then there are following three cases. 

(a) If it is a desired element, then search is successful. 

(b) If it is less than desired data, then search only the first half of the array, i.e., the elements which come to 

the left side of the middle element. 

(c) If it is greater than the desired data, then search only the second half of the array, i.e., the elements 

which come to the right side of the middle element. 

Repeat the same steps until an element is found or exhaust the search area. 

 

 

 
 
 
 
 
 
 



ALGORITHM FOR BINARY SEARCH 
Let A be an array of n elements A[1],A[2],A[3],...... A[n]. “Data” is an element to be searched. “mid”  

denotes the middle location of a segment (or array or sub-array) of the element of A. LB and UB is the 

lower and upper bound of the array which is under consideration. 

 

 

 
 

 

 

 

Fig. 7.1 
 
            1. Input an array A of n elements and “data” to be sorted 

2. LB = 0, UB = n; mid = int ((LB+UB)/2)  
 

3. Repeat step 4 and 5 while (LB <= UB) and (A[mid] ! = data)  
 

4. If (data < A[mid])   
(a) UB = mid–1 

5. Else 

(a) LB = mid + 1  
6. Mid = int ((LB + UB)/2)  

 
7. If (A[mid]== data)   

(a) Display “the data found” 8. 

Else 
 

(a) Display “the data is not found” 9. 

Exit 

 
Suppose we have an array of 7 elements 

 
 
 
 
 

Following steps are generated if we binary search a data = 45 from the above array.  
Step 1: 

 
 
 
 
 

 
LB = 0; UB = 6 mid = 

(0 + 6)/2 = 3 A[mid] = 

A[3] = 30 
 

Step 2:  
Since (A[3] < data) - i.e., 30 < 45 - reinitialise the variable LB, UB and mid 

 
 
 
 
 

 
LB = 3 UB = 6 mid = 

(3 + 6)/2 = 4 A[mid] = 

A[4] = 40 
 



Step 3:  
Since (A[4] < data) - i.e., 40 < 45 - reinitialise the variable LB, UB and mid 

 

                           
                           

                           

                           

                           

                           
                           
                           

 
LB = 4 UB = 6 mid = 

(4 + 6)/2 = 5 A[mid] = 

A[5] = 45 
 

Step 4:  
Since (A[5] == data) - i.e., 45 == 45 - searching is successful. 
 



 
Linked List 

 

 

         
 

 0x80017           
 

            
 

   DATA 0x80010  DATA 0x80031  DATA NULL  
 

            
 

   0x80017  0x80010  0x80031  

       
 

 
Fig. 5.3. Linked List representation in memory. 

 
Fig. 5.2 shows a schematic diagram of a linked list with 3 nodes. Each node is pictured with two 

parts. The left part of each node contains the data items and the right part represents the address of the next 

node; there is an arrow drawn from it to the next node. The next pointer of the last node contains a special 

value, called the NULL pointer, which does not point to any address of the node. That is NULL pointer 

indicates the end of the linked list. START pointer will hold the address of the 1
st

 node in the list START = 

NULL if there is no list (i.e.; NULL list or empty list). 
 

The next pointer of the last node contains a special value, called the NULL pointer, which 

does not point to any   address of the node. That is NULL pointer indicates the end of the 



linked list. START pointer will hold the address of the 1st node in the list START = 

NULL if there is no list (i.e.; NULL list or empty list). 

 
Suppose we want to store a list of integer numbers using linked list. Then it can be schematically 

represented as 
 

START 
 

30    
 31    

 32    
 33    

 34    

         
 

                       
 

 
Fig. 5.4. Linked list representation of integers 

The linear linked list can be represented in memory with the following declaration. 

 

struct Node 

{ 

int DATA; //Instead of ‘DATA’ we also use ‘Info’ 

struct Node *Next; //Instead of ‘Next’ we also use ‘Link’ 

}; 

typedef struct Node *NODE; 

 

ADVANTAGES AND DISADVANTAGES 
Linked list have many advantages and some of them are: 

1. Linked list are dynamic data structure. That is, they can grow or shrink during the 

execution of a program. 

2. Efficient memory utilization: In linked list (or dynamic) representation, memory is not 

pre-allocated. Memory is   allocated whenever it is required. And it is deallocated (or 

removed) when it is not needed. 

3. Insertion and deletion are easier and efficient. Linked list provides flexibility in 

inserting a data item at a specified position and deletion of a data item from the given 

position. 

4. Many complex applications can be easily carried out with linked list.  

Linked list has following disadvantages 

1. More memory: to store an integer number, a node with integer data and address field is 

allocated. That is more memory space is needed. 

2. Access to an arbitrary data item is little bit cumbersome and also time consuming. 

 

OPERATION ON LINKED LIST 
The primitive operations performed on the linked list are as follows 

1. Creation 

2. Insertion 

3. Deletion 

4. Traversing 

5. Searching 

6. Merging 

 

Creation operation is used to create a linked list. Once a linked list is created with one 

node, insertion operation can be used to add more elements in a node. 

 

Insertion operation is used to insert a new node at any specified location in the linked list. 

A new node may be inserted. 

(a) At the beginning of the linked list 



(b) At the end of the linked list 

(c) At any specified position in between in a linked list  

 

Deletion operation is used to delete an item (or node) from the linked list. A node may be 

deleted from the 

(a) Beginning of a linked list 

(b) End of a linked list 

(c) Specified location of the linked list 

 

Traversing is the process of going through all the nodes from one end to another end of a 

linked list. In a singly linked list we can visit from left to right, forward traversing, nodes 

only. But in doubly linked list forward and backward traversing is possible. 

 

Merging is the process of appending the second list to the end of the first list. Consider a 

list A having n nodes and B with m nodes. Then the operation concatenation will place 

the 1st node of B in the (n+1)th node in A. After concatenation A will contain (n+m) 

nodes. 

 

 

TYPES OF LINKED LIST 
Basically we can divide the linked list into the following four types in the order in which 

they (or node) are arranged. 
1. Singly linked list 

2. Doubly linked list 

3. Circular linked list 

4. Circular doubly linked List 

 

 

 
 

 

Singly Linked List 
All the nodes in a singly linked list are arranged sequentially by linking with a pointer. A singly 

linked list can grow or shrink, because it is a dynamic data structure. Following figure explains the different 

operations on a singly linked list. 

 



 
START 

 

 30 
 

Fig. 5.5. Create a node with DATA(30) 

 
START  

30 40 
 

Fig. 5.6. Insert a node with DATA(40) at the end 

 
START 

 
10     30    

 40   

       
 

            
 

              
Fig. 5.7. Insert a node with DATA(10) at the beginning 

 
START 

 
10 20 30 40 

 
Fig. 5.8. Insert a node with DATA(20) at the 2nd position 

 
START 

 
10     20     30    

 40    
 50   

             
 

                      
 

                        
Fig. 5.9. Insert a node with DATA(50) at the end 

 
Output →  10, 20, 30, 40, 50  

Fig. 5.10. Traversing the nodes from left to right 

 
START 

 
10    

 20    
 40    

 50   

      
 

                 
 

                   
Fig. 5.11. Delete the 3rd node from the list 



  

START   

20 40 50 

Fig. 5.12. Delete the 1st node 

START   

 20 40 
 

Fig. 5.13. Delete the last node 

 
 ALGORITHM FOR INSERTING A NODE 

 
New Node 

 
  33 

START   

20 30 34 

 
Fig. 5.14. Insertion of New Node 

 

 

 

 

 

 

 

 

 



Suppose START is the first position in linked list. Let DATA be the element to be inserted in the 

new node. POS is the position where the new node is to be inserted. TEMP is a temporary pointer to hold 

the node address. 

 

Insert a Node at the end 
 

1. Input DATA to be inserted  
 

2. Create a NewNode   
3. NewNode →  DATA = DATA   
4. NewNode →  Next = NULL  

 
8. If (SATRT equal to NULL) 

(a) START = NewNode  

9. Else  
 

(a) TEMP = START   
(b) While (TEMP → Next not equal to NULL) (i) 

TEMP = TEMP → Next  
10. TEMP →  Next = NewNode  

 
11. Exit  

 
Insert a Node at any specified position 
 

1. Input DATA and POS to be inserted  
 

2. intialise TEMP = START; and j = 0  
 

3. Repeat the step 3 while( k is less than POS) (a) 

TEMP = TEMP è Next  

(b) If (TEMP is equal to NULL)  
 

(i) Display “Node in the list less than the position” (ii) Exit  

 

(c) k = k + 1  
 

4. Create a New Node   
5. NewNode →  DATA = DATA   
6. NewNode →  Next = TEMP →  Next  
7. TEMP →  Next = NewNode  

 
8. Exit  

 

ALGORITHM FOR DELETING A NODE  
 

  Node to be deleted (ie; POS =3) 
 

START PTR  Temp 
 

    

20 30 33 34 
 

 

 
Fig. 5.15. Deletion of a Node. 

 
Suppose START is the first position in linked list. Let DATA be the element to be deleted. TEMP, 

HOLD is a temporary pointer to hold the node address. 
 

1. Input the DATA to be deleted   
2. if ((START →  DATA) is equal to DATA)   

(a) TEMP = START  



(b) START = START →  Next  
(c) Set free the node TEMP, which is deleted  
(d) Exit 

 
3. HOLD = START  
4. while ((HOLD →  Next →  Next) not equal to NULL))  

(a) if ((HOLD →  NEXT →  DATA) equal to DATA)  
(i) TEMP = HOLD →  Next  

(ii) HOLD →  Next = TEMP →  Next  
(iii) Set free the node TEMP, which is deleted  
(iv) Exit  

(b) HOLD = HOLD →  Next  
5. if ((HOLD →  next →  DATA) == DATA)  

(a) TEMP = HOLD →  Next  
(b) Set free the node TEMP, which is deleted (c) 

HOLD → Next = NULL  
(d) Exit  

6. Disply “DATA not found”  
 

7. Exit  

 
ALGORITHM FOR SEARCHING A NODE  

 
Suppose START is the address of the first node in the linked list and DATA is the information to 

be searched. After searching, if the DATA is found, POS will contain the corresponding position in the list. 

 
1. Input the DATA to be searched  

 
2. Initialize TEMP = START; POS =1;  

 
3. Repeat the step 4, 5 and 6 until (TEMP is equal to NULL)   

4. If (TEMP → DATA is equal to DATA) (a) 

Display “The data is found at POS” (b) Exit  

 

5. TEMP = TEMP →  Next  
 

6. POS = POS+1  
 

7. If (TEMP is equal to NULL)  
 

(a) Display “The data is not found in the list”  
 

8. Exit  

 

ALGORITHM FOR DISPLAY ALL NODES  
 

Suppose START is the address of the first node in the linked list. Following algo-rithm will visit all 

nodes from the START node to the end. 
 

1. If (START is equal to NULL) (a) 

Display “The list is Empty” (b) Exit  

 

2. Initialize TEMP = START  

3. Repeat the step 4 and 5 until (TEMP == NULL )   
4. Display “TEMP →  DATA”   
5. TEMP = TEMP →  Next  

 
6. Exit   



DOUBLY LINKED LIST 

 
A doubly linked list is one in which all nodes are linked together by multiple links which help in 

accessing both the successor (next) and predecessor (previous) node for any arbitrary node within the list. 

Every nodes in the doubly linked list has three fields: LeftPointer, RightPointer and DATA. Fig. 5.22 

shows a typical doubly linked list. 
 
 

LPoint DATA   RPoint 
 
 

Fig. 5.24. A typical doubly linked list node 
 

LPoint will point to the node in the left side (or previous node) that is LPoint will hold the address 

of the previous node. RPoint will point to the node in the right side (or next  

 

 

 

 

 

 



START  

NULL   10                   30   NULL 

 
Fig 5.30. Delete a node at the 2nd position 

 

Algorithm for Creation: 

tmp=create a new node 

tmp->info=num //assigning the data to the new node 

tmp->next=NULL; 

if(start==NULL) 

 

       tmp->prev=NULL; 

       start->prev=tmp; 

       start=tmp; 

 

else 

        q=start; 

        while(q->next!=NULL) 

        q=q->next; 

       q->next=tmp; 

       tmp->prev=q; 

 

 

Algorithm for insertion at Begining  
//a new node is created for inserting the data 

tmp=create a new node 

tmp->prev=NULL; 

tmp->info=num; 

tmp->next=start; 

start->prev=tmp; 

start=tmp; 

 

 ALGORITHM FOR INSERTING AT ANY POSITION NODE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.31. Insert a node at the 2nd position 
 

Suppose START is the first position in linked list. Let DATA be the element to be inserted in the 

new node. POS is the position where the NewNode is to be inserted. TEMP is a temporary pointer to hold 



the node address. 
 

1. Input the DATA and POS  
 

2. Initialize TEMP = START; i = 0  
 

3. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)   
4. TEMP = TEMP →  RPoint; i = i +1 

 
5. If (TEMP not equal to NULL) and (i equal to POS) 

 
(a) Create a New Node  
(b) NewNode →  DATA = DATA  
(c) NewNode →  RPoint = TEMP →  RPoint  
(d) NewNode →  LPoint = TEMP  
(e) (TEMP →  RPoint) →  LPoint = NewNode  
(f ) TEMP →  RPoint = New Node 

 
6. Else  

 
(a) Display “Position NOT found”  

 
7. Exit  

 
 
 ALGORITHM FOR DELETING A NODE 
 
 
 
 
 
 
 
 
 
 

Fig. 5.32. Delete a node at the 2nd position 
 

Suppose START is the address of the first node in the linked list. Let POS is the position of the 

node to be deleted. TEMP is the temporary pointer to hold the address of the node. After deletion, DATA 

will contain the information on the deleted node.  
1. Input the POS  

 
2. Initialize TEMP = START; i = 0  

 
3. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)   
4. TEMP = TEMP →  RPoint; i = i +1  
5. If (TEMP not equal to NULL) and (i equal to POS)  

(a) Create a New Node  
(b) NewNode →  DATA = DATA  
(c) NewNode →  RPoint = TEMP →  RPoint  
(d) NewNode →  LPoint = TEMP  
(e) (TEMP →  RPoint) →  LPoint = NewNode  
(f ) TEMP →  RPoint = New Node  

6. Else  
 

(a) Display “Position NOT found”  
 

7. Exit  

 

 



 

CIRCULAR LINKED LIST 
 

A circular linked list is one, which has no beginning and no end. A singly linked list can be made a 

circular linked list by simply storing the address of the very first node in the linked field of the last node. A 

circular linked list is shown in Fig. 5.33. 
 

 
START     

10 20 30 40 50 
 
 
 
 

Fig. 5.33. Circular Linked list 
 

A circular doubly linked list has both the successor pointer and predecessor pointer in 

circular manner as shown in the Fig. 5.34.  
 
 
 

START   

10 20 30 
 
 

 
Fig. 5.34. Circular Doubly Linked list 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

STACK: 

A stack is one of the most important and useful non-primitive linear data structure in computer 
science. It is an ordered collection of items into which new data items may be added/inserted and 
from which items may be deleted at only one end, called the top of the stack. As all the addition 
and deletion in a stack is done from the top of the stack, the last added element will be first 
removed from the stack. That is why the stack is also called Last-in-First-out (LIFO). Note that the 
most frequently accessible element in the stack is the top most elements, whereas the least 
accessible element is the bottom of the stack. 
 

The operation of the stack can be illustrated as in Fig. 3.1. 

 

 

 

 

The insertion (or addition) operation is referred to as push, and the deletion (or remove) operation as pop. A stack 
is said to be empty or underflow, if the stack contains no elements. At this point the top of the stack is present at 
the bottom of the stack. And it is overflow when the stack becomes full, i.e., no other elements can be pushed onto 
the stack. At this point the top pointer is at the highest location of the stack. 

 
OPERATIONS PERFORMED ON STACK 
The primitive operations performed on the stack are as follows: 

 
PUSH: The process of adding (or inserting) a new element to the top of the stack is called PUSH operation. 

Pushing an element to a stack will add the new element at the top. After every push operation the top is 

incremented by one. If the array is full and no new element can be accommodated, then the stack overflow 

condition occurs. 

 

POP: The process of deleting (or removing) an element from the top of stack is called POP operation. After 

every pop operation the stack is decremented by one. If there is no element in the stack and the pop 

operation is performed then the stack underflow condition occurs. 

Fig. 3.1. Stack operation. 



 

STACK IMPLEMENTATION 
 
Stack can be implemented in two ways: 

 

1. Static implementation (using arrays) 

2. Dynamic implementation (using pointers) 

 

Static implementation uses arrays to create stack. Static implementation using arrays is a very simple 

technique but is not a flexible way, as the size of the stack has to be declared during the program design, 

because after that, the size cannot be varied (i.e., increased or decreased). Moreover static implementation 

is not an efficient method when resource optimization is concerned (i.e., memory utilization). For example 

a stack is implemented with array size 50. That is before the stack operation begins, memory is allocated 

for the array of size 50. Now if there are only few elements (say 30) to be stored in the stack, then rest of 

the statically allocated memory (in this case 20) will be wasted, on the other hand if there are more number 

of elements to be stored in the stack (say 60) then we cannot change the size array to increase its capacity. 

The above said limitations can be overcome by dynamically implementing (is also called linked list 

representation) the stack using pointers. 

 

STACK USING ARRAYS 
Implementation of stack using arrays is a very simple technique. Algorithm for pushing (or add or insert) a 

new element at the top of the stack and popping (or delete) an element from the stack is given below. 

Algorithm for push 
 
Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which will hold the data 

items. TOP is the pointer that points to the top most element of the stack. Let DATA is the data item to be 

pushed. 

 

1. If TOP = SIZE – 1, then: 

(a) Display “The stack is in overflow condition” 

(b) Exit 

2. TOP = TOP + 1 

3. STACK [TOP] = ITEM 

4. Exit 

 

Algorithm for pop 
Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which will hold the data 

items. TOP is the pointer that points to the top most element of the stack. DATA is the popped (or deleted) 

data item from the top of the stack. 

 

1. If TOP < 0, then 

(a) Display “The Stack is empty” 

(b) Exit 

2. Else remove the Top most element 

3. DATA = STACK[TOP] 

4. TOP = TOP – 1 

5.Exit. 





 

 





 


