1.3 DATA STRUCTURES

Data may be organized in many different ways; the logical or mathematical model of a particular
organization of data is called a dara structure. The choice of a particular data model depends on
two considerations. First, it must be rich enough in structure to mirror the actual relationships of
the data in the real world. On the other hand, the structure should be simple enough that one can
effectively process the data when necessary. This section will introduce us to some of the data
structures which will be discussed in detail later in the text.

Classification of Data Structures

Data structures are generally classified into primitive and non-primitive data structures. Basic data
types such as integer, real, character and boolean are known as primitive data structures. These data
types consist of characters that cannot be divided, and hence they are also called simple data types.

The simplest example of non-primitive data structure is the processing of complex numbers.
Very few computers are capable of doing arithmetic on complex numbers. Linked-lists, stacks,
queues, trees and graphs are examples of non-primitive data structures. Figure 1.1 shows the
classification of data structures.

Data Structures
|

1 '

Primitive Dala Structures Non-Primitive Data Structures
R W Ty’
Integer ~ Real Character Boolean Linear Data Non-linear Data
Structures Structures
- Arrays Trees
- Linked List Graphs
- Stacks
- Queues

Fig. 1.1 Classification of Data Structures

Based on the structure and arrangement of data, non-primitive data structures are further classi-
fied into linear and non-linear.

A data structure is said to be linear if its elements form a sequence or a linear list. In linear data
structures, the data is arranged in a linear fashion although the way they are stored in memory need
not be sequential. Arrays, linked lists, stacks and queues are examples of linear data structures.

Conversely, a data structure is said to be non-linear if the data is not arranged in sequence. The
insertion and deletion of data is therefore not possible in a linear fashion. Trees and graphs are
examples of non-linear data structures.

Arrays

The simplest type of data structure is a linear (or one-dimensional) array. By a linear array, we
mean a list of a finite number n of similar data elements referenced respectively by a set of n
consecutive numbers, usually 1, 2, 3, ..., n. If we choose the name A for the array, then the
elements of A are denoted by subscript notation

a,, a,, as, ..., a,
or by the parenthesis notation
A(l), A(2), A(3), ..., A(N)
or by the bracket notation
All1], A[2], A[3], ..., A[N]
Regardless of the notation, the number K in A[K] is called a subscript and A[K] is called a
subscripted variable.

Remark: The parentheses notation and the bracket notation are frequently used when the array
name consists of more than one letter or when the array name appears in an algorithm. When using
this notation we will use ordinary uppercase letters for the name and subscripts as indicated above
by the A and N. Otherwise, we may use the usual subscript notation of italics for the name and
subscripts and lowercase letters for the subscripts as indicated above by the a and n. The former
notation follows the practice of computer-oriented texts whereas the latter notation follows the
practice of mathematics in print.

1.4 DATA STRUCTURE OPERATIONS

The data appearing in our data structures are processed by means of certain operations. In fact, the
particular data structure that one chooses for a given situation depends largely on the frequency
with which specific operations are performed. This section introduces the reader to some of the
most frequently used of these operations.

There are basically six operations:

. Traversing: Accessing each record exactly once so that certain items in the record may be
processed. (This accessing and processing is sometimes called “visiting” the record.)

2. Searching: Finding the location of the record with a given key value, or finding the locations
of all records which satisfy one or more conditions.

3. Inserting: Adding a new record to the structure.

4. Deleting: Removing a record from the structure.

5. Sorting: Arranging the elements of list in an order (either ascending or descending).
6. Merging: combining the two list into one list.

Algorithm:
An algorithm is a well-defined list of steps for solving a particular problem.
The time and space are the two measure for efficiency The éom'plexj[y of an algorithm is

the function which gives the running time and/or space in terms of the input size.

Complexity of Algorithm:

The analysis of algorithms is a major task in computer science. In order to compare algorithms, we must
have some criteria to measure the efficiency of ouralgorithms.

Suppose M is an algorithm, and suppose 7 is the size of the input data. The time and space used
by the algorithm M are the two main measures for the efficiency of M. The time is measured by
counting the number of key operations—in sorting and searching algorithms, for example, the
number of comparisons. That is because key operations are so defined that the time for the other
operations is much less than or at most proportional to the time for the key operations. The space
is measured by counting the maximum of memory needed by the algorithm.

The complexity of an algorithm M is the function f{n) which gives the running time and/or
storage space requirement of the algorithm in terms of the size n of the input data. Frequently, the
storage space required by an algorithm is simply a multiple of the data size n. Accordingly, unless
otherwise stated or implied, the term “complexity™ shall refer to the running time of the algorithm.

Time complexity is of three types:

1. Worst case: the maximum value of fin) for any possible input
2. Average case: the expected value of fin)
Sometimes we also consider the minimum possible value of fin), called the best case.

Asymptotic Notation:

1. Big Oh Notation:

Suppose M is an algorithm, and suppose n is the size of the input data. Clearly the complexity fin)
of M increases as n increases. It is usually the rate of increase of fin) that we want to examine.
This is usually done by comparing fin) with some standard function, such as

log, n, n log, n, n, n?, 2

Definition

Suppose f(n) and gin) are functions defined on the positive integers with the property that fin)
is bounded by some multiple of gin) for almost all n. That is, suppose there exist a positive integer
n, and a positive number M such that, for all n > n,, we have

(nyl € Mlgn)l
Then we may write
fim) = O(g(n))
which is read “f(n) is of order g(n).” For any polynomial P(n) of degree m, we show in Solved

For example:

S — STERT + 8321 — 248 =)

Omega Notation ()
The omega notation is used when the function g(nj defines a lower bound for the function f{n).

Definition
fin) = Q(g(n)) (read as f of n is omega of g of n), iff there exists a positive integer n, and a positive
number M such that If(n)l 2 Mig(n)l, for all n 2 n,,.

For f(n) = 18n + 9, f(n) > 18n for all n, hence fin) = Q(n). Also, for f(n) = 90n® + 18n + 6,
f(n) > 90n* for n 2 0 and therefore fin) = Q(n?).

For f(n) = C(g(n)), g(n) is a lower bound function and there may be several such functions, but it
is appropriate that the function which is almost as large a function of n as possible such that the
definition of Q is satisfied, is chosen as g(n). Thus for example, f(n) = 5Sn + 1 leads to both f(n) =
Q(n) and f(n) = Q(1). However, we never consider the latter to be correct, since f(n)= Q(n) represents
the largest possible function of n satisfying the definition of £ and hence is more informative.

Theta Notation ()

The theta notation is used when the function f(n) is bounded both from above and below by the
function g(n).

Definition
fin) = ©(g(n)) (read as fon n is theta of g of n) iff there exist two positive constants ¢, and ¢,, and
a positive integer n;, such that ¢,lg(n)l < Ifin)l € c,lg(n) for all n 2 ny,

From the definition it implies that the function g(#n) is both an upper bound and a lower bound
for the function f(n) for all values of n, n 2 ng. In other words, f(n) is such that, f(n) = O(g(n)) and
fin) = Qg(n)).

For f(n) = 18n + 9, since fin) > 18n and f(n) < 27n for n = |, we have f(n) = Q(n) and
fin) = O(n) respectively, for n = 1. Hence f(n) = O(n). Again, 160 + 30n — 90 = ©(n?) and 7.2" +
30n = ©(2").

Array:

Data structures are classified as either linear or nonlinear. A data structure is said to be linear il its
elements form a sequence, or, in other words, a linear list. There are two basic ways of representing
such linear structures in memory. One way is to have the linear relationship between the elements
represented by means of sequential memory locations. These linear structures are called grrays
and form the main subject matter of this chapter. The other way is 1o have the lnear relationship
between the elements represented by means of pointers or links. These linear structures are called
linked list.

The operations one normally performs on any linear structure, whether it be an array or a linked
list, include the following:

(a) Traversal. Processing each element in the list.

(b) Search. Finding the location of the element with a given value or the record with a given
key.

(c) Insertion. Adding a new element to the list.

(d) Deletion. Removing an element from the list.

(e} Sorting. Arranging the elements in some type ol order.

(f) Mereing. Combining two lists mto a single hist.

Length or size of array can be given as

Length = UB - LB + 1

Where LB is the lower bound(first index) and UB is the upper bound(last index) of the
array.

Representation of Linear Array in memory:
Let LA be a linear array in the memory of the computer. Recall that the memory of the computer is

simply a sequence of addressed locations as pictured in Fig. 4.3. Let us use the notation
LOC(LA[K]) = address of the element LA[K] of the array LA

1000

1001

1002

1004

Fig: Computer Memory
As previously noted, the elements of LA are stored in successive memory cells. Accordingly, the

computer does not need to keep track of the address of every element of LA, but needs to keep
track only of the address of the first element of LA, denoted by

Base(LA)
and called the base address of LA. Using this address Base(LA), the computer calculates the

address of any element of LA by the following formula:

LOC (LA[K]) = Base(LA) + w(K - lower bound)

where w is the number of words per memory cell for the array LA. Observe that the time to
calculate LOC(LA[K]) is essentially the same for any value of K. Furthermore, given any subscript
K, one can locate and access the content of LA[K] without scanning any other element of LA.

Example:

Consider the array AUTO in Example 4.1(b), which records the number of automobiles sold each
year from 1932 through 1984. Suppose AUTO appears in memory as pictured in Fig. 4.4. That is,
Base(AUTO) = 200, and w = 4 words per memory cell for AUTO. Then

LOC(AUTO[1932]) = 200, LOC(AUTO[1933]) = 204, LOC(AUTO[1934]) = 208, ...

The address of the array element for the year K = 1965 can be obtained by using Eq. (4.2):
LOC(AUTO[1965]) = Base(AUTO) + w(1965 - lower bound)
= 200 + 4(1965 - 1932) = 332

Again we emphasize that the contents of this element can be obtained without scanning any
other element in array AUTO.

200

201
202
203
204)
205
206
207
208 3
209
210
211

> AUTO[1932]

s AUTO[1933)

L AUTO[1934]

Traversing the Linear Array:

Let A be a collection of data elements stored in the memory of the computer. Suppose we want to
print the contents of each element of A or suppose we want to count the number of elements of A
with a given property. This can be accomplished by rraversing A, that is, by accessing and

processing (frequently called visiting) each element of A exactly once.

The following algorithm traverses a linear array LA. The simplicity of the algorithm comes
from the fact that LA is a linear structure. Other linear structures, such as linked lists, can also be
easily traversed. On the other hand, the traversal of nonlinear structures, such as trees and graphs,

is considerably more complicated.

Insertion and Deletion

Let A be a collection of data elements in the memory of the computer. “Inserting” refers to the operation
of adding another element to the collection A, and “deleting” refers to the operation of removing one
element from array.

Inserting an element at the “end” of a linear array can be easily done provided the memory
space allocated for the array is large enough to accommodate the additional element. On the other
hand, suppose we need to insert an element in the middle of the array. Then, on the average, half
of the elements must be moved downward to new locations to accommodate the new element and
keep the order of the other elements.

Similarly, deleting an element at the “end” of an array presents no difficulties, but deleting an
element somewhere in the middle of the array would require that each subsequent element be

moved one location upward in order to “fill up” the array.
“downward” refers to locations with larger subscripts, and the term “upward” refers to locations

with smaller subscripts.

(Inserting into a Linear Array) INSERT (LA, N, K, ITEM)
Here LA is a linear array with N elements and K is a positive integer such that
K < N. This algorithm inserts an element ITEM into the Kth position in LA.
1. [Initialize counter.] Set J : = N.

2. Repeat Steps 3 and 4 while J 2 K.

3. [Move Jth element downward.] Set LA[J + 1] := LA[J].

4 [Decrease counter.] Set J :=J - 1.
[End of Step 2 loop.] .
[Insert element.] Set LA[K] := ITEM.
[Reset N.] Set N := N + 1.
Exit.

Now

The following algorithm deletes the Kth element from a linear array LA and assigns it to a
variable ITEM.

(Deleting from a Linear Array) DELETE(LA, N, K, ITEM)
Here LA is a linear array with N elements and K is a positive integer such that
K < N. This algorithm deletes the Kth element from LA.

1. Set ITEM := LA[K].
2. RepeatforJ=KtoN- 1:
[Move J + Ist element upward.] Set LA[J] := LA[J + 1].
[End of loop.] :
3. [Reset the number N of elements in LA.] Set N: = N - 1.
4. Exit,

Searching:

Searching is a process of checking and finding an element from a list of elements. Let A be a collection of
data elements, i.e., A is a linear array of say n elements. If we want to find the presence of an element
“data” in A, then we have to search for it. The search is successful if data does appear in A and
unsuccessful if otherwise. There are several types of searching techniques; one has some advantage(s) over
other. Following are the important searching techniques:

1. Linear or Sequential Searching
2. Binary Searching

Let DATA be a collection of data elements in memory, and suppose a specific ITEM of information
is given. Searching refers to the operation of finding the location LOC of ITEM in DATA, or
printing some message that ITEM does not appear there. The search is said to be successful if
ITEM does appear in DATA and unsuccessful otherwise,

Linear Search

Suppose DATA is a linear array with n elements. Given no other information about DATA, the
most intuitive way to search for a given ITEM in DATA is to compare ITEM with each element of
DATA one by one. That is, first we test whether DATA[1] = ITEM, and then we test whether
DATA|2] = ITEM, and so on. This method, which traverses DATA sequentially to locate ITEM, is
called linear search or sequential search.

To simplify the matter, we first assign ITEM to DATA[N + 1], the position following the last
element of DATA. Then the outcome

LOC=N+1

where LOC denotes the location where ITEM first occurs in DATA, signifies the search is
unsuccessful. The purpose of this initial assignment is to avoid repeatedly testing whether or not
we have reached the end of the array DATA. This way, the search must eventually “succeed.”

ALGORITHM FOR LINEAR SEARCH
Let A be an array of n elements, A[1],A[2],A[3], A[n]. “data” is the element to be searched. Then this
algorithm will find the location “loc” of data in A. Set loc = — 1,if the search is unsuccessful.

1. Input an array A of n elements and “data” to be searched and initialise loc = — 1.
2. Initialise i = 0; and repeat through step 3 if (i < n) by incrementing i by one .

3. If (data = A[i])

(@) loc=i

(b) GOTO step 4

4. 1f (loc > 0)

(a) Display “data is found and searching is successful”

5. Else

(a) Display “data is not found and searching is unsuccessful”

6. Exit

BINARY SEARCH

Binary search is an extremely efficient algorithm when it is compared to linear search. Binary search
technique searches “data” in minimum possible comparisons. Suppose the given array is a sorted one,
otherwise first we have to sort the array elements. Then apply the following conditions to search a “data”.

1. Find the middle element of the array (i.e., n/2 is the middle element if the array or the sub-array contains
n elements).

2. Compare the middle element with the data to be searched, then there are following three cases.

(a) If it is a desired element, then search is successful.

(b) If it is less than desired data, then search only the first half of the array, i.e., the elements which come to
the left side of the middle element.

(c) If it is greater than the desired data, then search only the second half of the array, i.e., the elements
which come to the right side of the middle element.

Repeat the same steps until an element is found or exhaust the search area.

ALGORITHM FOR BINARY SEARCH

Let A be an array of n elements A[1],A[2],A[3]....... A[n]. “Data” is an element to be searched. “mid”
denotes the middle location of a segment (or array or sub-array) of the element of A. LB and UB is the
lower and upper bound of the array which is under consideration.

Search in the 1st halt of the array mid value Search in the 2nd half of the array
First value (first + last)2 [ast value
Fig. 7.1

1. Input an array A of n elements and “data” to be sorted
2. LB =0, UB =n; mid = int ((LB+UB)/2)

3. Repeat step 4 and 5 while (LB <= UB) and (A[mid] ! = data)
4. If (data < A[mid])
(a) UB = mid-1
5. Else
(@) LB=mid +1
6. Mid = int (LB + UB)/2)
7. If (A[mid]== data)
(a) Display “the data found” 8.
Else
(a) Display “the data is not found” 9.
Exit

Suppose we have an array of 7 elements

9 [10|25|30[40 |45 |70

0 1 2 3 4 5 6
Following steps are generated if we binary search a data = 45 from the above array.
Step 1:

1.B UB

G 10|25]|30(40 45|70

¢ 1 2 3 4 5 6
LB=0; UB=6mid =
(0 +6)/2=3 A[mid] =
A[3]=30
Step 2:
Since (A[3] < data) - i.e., 30 < 45 - reinitialise the variable LB, UB and mid

I.B UB

9 [1025|3040 (45|70

0 1 2 3 4 5 6
LB =3 UB =6 mid =
(3 + 6)/2 = 4 Almid] =
Al4] = 40

Step 3:
Since (A[4] < data) - i.e., 40 < 45 - reinitialise the variable LB, UB and mid

LB UuB

LB=4UB=6 mid=

(4 +6)/2=5A[mid] =

A[5] =45

Step 4:

Since (A[5] == data) - i.e., 45 == 45 - searching is successful.

Linked List

If the memory is allocated for the variable during the compilation (i.e.; before execu-
tion) of a program, then it is fixed and cannot be changed. For example, an array A[{100] is
declared with 100 elements, then the allocated memory is fixed and cannot decrease or
increase the SIZE of the array if required. So we have to adopt an alternative strategy to
allocate memory only when it is required. There is a special data structure called linked
list that provides a more flexible storage system and it does not require the use of arrays.

A linked list is a linear collection of specially designed data elements, called nodes,
linked to one another by means of pointers. Each node is divided into two parts: the first
part contains the information of the element, and the second part contains the address of
the next node in the linked list. Address part of the node is also called linked or next field.
Following Fig 5:1 shows a typical example of node.

PTR

PTR = DATA = 50
50 NULL PTR = Next=NULL

DATA Next

Fig. 5.1. Nodes.

START
\ DATA | | DATA || DATA

Fig. 5.2. Linked List.

0x80017

DATA[0x80010 DATA [0x80031 DATA| NULL
0x80017 0x80010 0x80031

Fig. 5.3. Linked List representation in memory.

Fig. 5.2 shows a schematic diagram of a linked list with 3 nodes. Each node is pictured with two
parts. The left part of each node contains the data items and the right part represents the address of the next
node; there is an arrow drawn from it to the next node. The next pointer of the last node contains a special
value, called the NULL pointer, which does not point to any address of the node. That is NULL pointer
indicates the end of the linked list. START pointer will hold the address of the 1% node in the list START =
NULL if there is no list (i.e.; NULL list or empty list).

The next pointer of the last node contains a special value, called the NULL pointer, which
does not point to any address of the node. That is NULL pointer indicates the end of the

linked list. START pointer will hold the address of the 1st node in the list START =
NULL if there is no list (i.e.; NULL list or empty list).

Suppose we want to store a list of integer numbers using linked list. Then it can be schematically
represented as

START
\A 30f —wf 31 Fwf 32] — 33 34

Fig. 5.4. Linked list representation of integers
The linear linked list can be represented in memory with the following declaration.

struct Node

{

int DATA; //Instead of ‘DATA” we also use ‘Info’

struct Node *Next; //Instead of ‘Next” we also use ‘Link’
¥

typedef struct Node *NODE;

ADVANTAGES AND DISADVANTAGES

Linked list have many advantages and some of them are:

1. Linked list are dynamic data structure. That is, they can grow or shrink during the
execution of a program.

2. Efficient memory utilization: In linked list (or dynamic) representation, memory is not
pre-allocated. Memory is allocated whenever it is required. And it is deallocated (or
removed) when it is not needed.

3. Insertion and deletion are easier and efficient. Linked list provides flexibility in
inserting a data item at a specified position and deletion of a data item from the given
position.

4. Many complex applications can be easily carried out with linked list.

Linked list has following disadvantages

1. More memory: to store an integer number, a node with integer data and address field is
allocated. That is more memory space is needed.

2. Access to an arbitrary data item is little bit cumbersome and also time consuming.

OPERATION ON LINKED LIST

The primitive operations performed on the linked list are as follows
1. Creation

2. Insertion

3. Deletion

4. Traversing

5. Searching

6. Merging

Creation operation is used to create a linked list. Once a linked list is created with one
node, insertion operation can be used to add more elements in a node.

Insertion operation is used to insert a new node at any specified location in the linked list.
A new node may be inserted.
(a) At the beginning of the linked list

(b) At the end of the linked list
(c) At any specified position in between in a linked list

Deletion operation is used to delete an item (or node) from the linked list. A node may be
deleted from the

(a) Beginning of a linked list

(b) End of a linked list

(c) Specified location of the linked list

Traversing is the process of going through all the nodes from one end to another end of a
linked list. In a singly linked list we can visit from left to right, forward traversing, nodes
only. But in doubly linked list forward and backward traversing is possible.

Merging is the process of appending the second list to the end of the first list. Consider a
list A having n nodes and B with m nodes. Then the operation concatenation will place
the 1st node of B in the (n+1)th node in A. After concatenation A will contain (n+m)
nodes.

TYPES OF LINKED LIST

Basically we can divide the linked list into the following four types in the order in which
they (or node) are arranged.

1. Singly linked list

2. Doubly linked list

3. Circular linked list

4. Circular doubly linked List

The maintenance of linked lists in memory assumes the possibility of inserting new nodes into the
lists and hence requires some mechanism which provides unused memory space for the new nodes.
Analogously, some mechanism is required whereby the memory space of deleted nodes becomes
available for future use.

Together with the linked lists in memory, a special list is maintained which consists of unused
memory cells. This list, which has its own pointer, is called the list of available space or the free-
storage list or the free pool.

Overflow and Underflow

Sometimes new data are to be inserted into a data structure but there is no available space, i.e., the
free-storage list is empty. This situation is usually called overflow. The programmer may handle
overflow by printing the message OVERFLOW. In such a case, the programmer may then modify
the program by adding space to the underlying arrays. Observe that overflow will occur with our
linked lists when AVAIL = NULL and there is an insertion.

Analogously, the term underflow refers to the situation where one wants to delete data from a
data structure that is empty. The programmer may handle underflow by printing the message
UNDERFLOW. Observe that underflow will occur with our linked lists when START = NULL
and there is a deletion.

Singly Linked List
All the nodes in a singly linked list are arranged sequentially by linking with a pointer. A singly

linked list can grow or shrink, because it is a dynamic data structure. Following figure explains the different
operations on a singly linked list.

START

*i

Fig. 5.5. Create a node with DATA(30)

STAR]

\

3Q

—»f40

Fig. 5.6. Insert a node with DATA(40) at the end

START

\

10

30

P

> 40

Fig. 5.7. Insert a node with DATA(10) at the beginning

START

A

10

___.,

2(

___.,

3Q

940 i

Fig. 5.8. Insert a node with DATA(20) at the 2nd position

START \
' \

10

20

30

P

P

»] 20 1-pl 50

Fig. 5.9. Insert a node with DATA(50) at the end

Output - 10, 20, 30, 40, 50
Fig. 5.10. Traversing the nodes from left to right

START

\

10

>

20

>

40

Fig. 5.11. Delete the 3rd node from the list

START
\ 20 ——bf 40 —.f 50[.

Fig. 5.12. Delete the 1st node

START
\ 20 ot 4oi

Fig. 5.13. Delete the last node

ALGORITHM FOR INSERTING A NODE

- ———a

START \
y N

/-" *~.. New Node
5 \

33 L)

\‘{. %/,
200 ——» 3 [-f--—-- >34 i

Fig. 5.14. Insertion of New Node

Inserting at the Beginning of a List

Suppose our linked list is not necessarily sorted and there is no reason to insert a new node in any
special place in the list. Then the easiest place to insert the node is at the beginning of the list. An
algorithm that does so follows.

Algorithm 5.4: INSFIRST(INFO, LINK, START. AVAIL, ITEM)
This algorithm inserts I'TEM as the first node in the list.

1

~

OV LA, LD

[OVERFLOW?] If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
[Remove first node from AVAIL list.]

Set NEW := AVAIL and AVAIL := LINK[AVAIL].

Set INFO[NEW] := ITEM. [Copies new data into new node]

Set LINK[NEW] := START. [New node now points to original first node.]
Set START := NEW. [Changes START so it points to the new node.]
Exit.

Steps 1 to 3 have already been discussed, and the schematic diagram of Steps 2 and 3 appears in
Fig. 5.18. The schematic diagram of Steps 4 and 5 appears in Fig. 5.19.

START

Suppose START is the first position in linked list. Let DATA be the element to be inserted in the
new node. POS is the position where the new node is to be inserted. TEMP is a temporary pointer to hold
the node address.

Insert a Node at the end

1. Input DATA to be inserted
Create a NewNode
NewNode -~ DATA = DATA
NewNode — Next = NULL
If (SATRT equal to NULL)
(a) START = NewNode
9. Else

(a) TEMP = START

(b) While (TEMP — Next not equal to NULL) (i)

TEMP = TEMP - Next

10. TEMP — Next = NewNode
11. Exit

© H~ wn

Insert a Node at any specified position

1. Input DATA and POS to be inserted
2. intialise TEMP = START; and j =0
3. Repeat the step 3 while(k is less than POS) (a)
TEMP = TEMP & Next
(b) If (TEMP is equal to NULL)
(i) Display “Node in the list less than the position” (ii) Exit

(c)k=k+1
. Create a New Node
. NewNode -~ DATA = DATA
. NewNode —» Next = TEMP — Next
TEMP - Next = NewNode
. Exit

© N o U A

ALGORITHM FOR DELETING A NODE

Node to be deleted (ie; POS =3)

PTl‘{/,_—-'_‘Z\
of.

START \ Temp
A e ; Wi
_\
: A

Fig. 5.15. Deletion of a Node.

Suppose START is the first position in linked list. Let DATA be the element to be deleted. TEMP,
HOLD is a temporary pointer to hold the node address.

1. Input the DATA to be deleted
2. if ((START —» DATA) is equal to DATA)
(a) TEMP = START

(b) START = START — Next
(c) Set free the node TEMP, which is deleted
(d) Exit

. HOLD = START

4. while (HOLD — Next —» Next) not equal to NULL))

(a) if (HOLD - NEXT — DATA) equal to DATA)
(i) TEMP = HOLD - Next
(ii) HOLD —» Next = TEMP - Next
(iii) Set free the node TEMP, which is deleted
(iv) Exit
(b) HOLD = HOLD - Next

.if (HOLD - next > DATA) == DATA)

(a) TEMP = HOLD - Next

(b) Set free the node TEMP, which is deleted (c)
HOLD — Next = NULL

(d) Exit

6. Disply “DATA not found”
7. Exit

ALGORITHM FOR SEARCHING A NODE

Suppose START is the address of the first node in the linked list and DATA is the information to
be searched. After searching, if the DATA is found, POS will contain the corresponding position in the list.

1. Input the DATA to be searched

2. Initialize TEMP = START; POS =1,

3.

4. If (TEMP - DATA is equal to DATA) (a)

Repeat the step 4, 5 and 6 until (TEMP is equal to NULL)

Display “The data is found at POS” (b) Exit

. TEMP = TEMP - Next

6. POS = POS+1
7. If (TEMP is equal to NULL)

(a) Display “The data is not found in the list”

. Exit

ALGORITHM FOR DISPLAY ALL NODES

Suppose START is the address of the first node in the linked list. Following algo-rithm will visit all
nodes from the START node to the end.

1.

o U s wN

If (START is equal to NULL) (a)
Display “The list is Empty” (b) Exit

. Initialize TEMP = START

Repeat the step 4 and 5 until (TEMP == NULL)
Display “TEMP - DATA”

TEMP = TEMP - Next

Exit

DOUBLY LINKED LIST

A doubly linked list is one in which all nodes are linked together by multiple links which help in
accessing both the successor (next) and predecessor (previous) node for any arbitrary node within the list.

Every nodes in the doubly linked list has three fields: LeftPointer, RightPointer and DATA. Fig. 5.22
shows a typical doubly linked list.

LPoint | DATA |RPoint

Fig. 5.24. A typical doubly linked list node

LPoint will point to the node in the left side (or previous node) that is LPoint will hold the address
of the previous node. RPoint will point to the node in the right side (or next node) that is RPoint will hold

the address of the next node. DATA will store the information of the node.

START
\ NULL (10 TP - 20 TP 30 | NULL
Fig. 5.25. Doubly Linked List
0x80019
NULL |10 0x80017 0x80019| 20 |0x80021 0x80017| 30 |NULL
0x80019 0x80017 0x80021

Fig. 5.26. Memory Representation of Doubly Linked List

5.11.1. REPRESENTATION OF DOUBLY LINKED LIST

A node in the doubly linked list can be represented in memory with the following
declarations.

struct Node

{
int DATA;
struct Node *RChild;
struct Node *L.Child:

typedef struct Node *NODE;

All the operations performed on singly linked list can also be performed on doubly
linked list. Following figure will illustrate the insertion and deletion of nodes.

START
NULL Po |NULL |

Fig. 5.27. Add(20)

NULL }20 | et |30 nuLL |

Fig 5.28. Insert (30) at the end

W NULL |10 | 4|'>4_‘_ Izol —|—>¢ ISOINULL I

Fig 5.29. Insert (10) at the beginning

START

NULL [10 T 30 |NULL

Fig 5.30. Delete a node at the 2nd position

Algorithm for Creation:

tmp=create a new node

tmp->info=num //assigning the data to the new node
tmp->next=NULL,

if(start==NULL)

tmp->prev=NULL;
start->prev=tmp;
start=tmp;

else
g=start;
while(g->next!=NULL)
g=q->next;
g->next=tmp;
tmp->prev=q;

Algorithm for insertion at Begining
/la new node is created for inserting the data
tmp=create a new node

tmp->prev=NULL,

tmp->info=num;

tmp->next=start;

start->prev=tmp;

start=tmp;

ALGORITHM FOR INSERTING AT ANY POSITION NODE

/_"_,.._._.._..-.- ---------- ““""E'\ieto be inserted
{ 20 J
START" : """ T ;r
k| RUEL 8 | [gl | |88 | NLLL

Fig. 5.31. Insert a node at the 2nd position

Suppose START is the first position in linked list. Let DATA be the element to be inserted in the
new node. POS is the position where the NewNode is to be inserted. TEMP is a temporary pointer to hold

the node address.
1. Input the DATA and POS
2. Initialize TEMP = START;i=0
3. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)
4, TEMP = TEMP - RPoint;i=i+1
5. If (TEMP not equal to NULL) and (i equal to POS)

(a) Create a New Node

(b) NewNode -~ DATA = DATA

(c) NewNode — RPoint = TEMP - RPoint
(d) NewNode - LPoint = TEMP

(e) (TEMP - RPoint) - LPoint = NewNode
(f) TEMP - RPoint = New Node

6. Else

(a) Display “Position NOT found”

7. Exit

ALGORITHM FOR DELETING A NODE

NULL g | e »Lo 20 “‘““é 30 | NULL

Taeleted Node

«

Fig. 5.32. Delete a node at the 2nd position

Suppose START is the address of the first node in the linked list. Let POS is the position of the
node to be deleted. TEMP is the temporary pointer to hold the address of the node. After deletion, DATA
will contain the information on the deleted node.

1.

gaoAa wWN

Input the POS

Initialize TEMP = START; i=0

. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)
. TEMP = TEMP - RPoint;i=i+1

. If (TEMP not equal to NULL) and (i equal to POS)
(a) Create a New Node

(b) NewNode -~ DATA = DATA

(c) NewNode — RPoint = TEMP - RPoint

(d) NewNode - LPoint = TEMP

(e) (TEMP - RPoint) -» LPoint = NewNode

(f) TEMP - RPoint = New Node

. Else

(a) Display “Position NOT found”

. Exit

CIRCULAR LINKED LIST

A circular linked list is one, which has no beginning and no end. A singly linked list can be made a
circular linked list by simply storing the address of the very first node in the linked field of the last node. A
circular linked list is shown in Fig. 5.33.

START

Oy
’—i

A circular doubly linked list has both the successor pointer and predecessor pointer in
circular manner as shown in the Fig. 5.34.

Fig. 5.33. Circular Linked list

START

Fig. 5.34. Circular Doubly Linked list

STACK:

A stack is one of the most important and useful non-primitive linear data structure in computer
science. It is an ordered collection of items into which new data items may be added/inserted and
from which items may be deleted at only one end, called the top of the stack. As all the addition
and deletion in a stack is done from the top of the stack, the last added element will be first
removed from the stack. That is why the stack is also called Last-in-First-out (LIFO). Note that the
most frequently accessible element in the stack is the top most elements, whereas the least
accessible element is the bottom of the stack.

The operation of the stack can be illustrated as in Fig. 3.1.

S 47 |4 Top
33 “— Top 33
2y (¢ Top 20 20
4+—Top
Stack is empty Add (20) Add (33} Add (47}
e Top |
33 <+— Top 33 | 33 +4— Top
20 20 m 20 |4 Top
Delete (47) Add (77) Delete (77) Delete (33)

Fig. 3.1. Stack operation.

The insertion (or addition) operation is referred to as push, and the deletion (or remove) operation as pop. A stack
is said to be empty or underflow, if the stack contains no elements. At this point the top of the stack is present at
the bottom of the stack. And it is overflow when the stack becomes full, i.e., no other elements can be pushed onto
the stack. At this point the top pointer is at the highest location of the stack.

OPERATIONS PERFORMED ON STACK
The primitive operations performed on the stack are as follows:

PUSH: The process of adding (or inserting) a new element to the top of the stack is called PUSH operation.
Pushing an element to a stack will add the new element at the top. After every push operation the top is
incremented by one. If the array is full and no new element can be accommodated, then the stack overflow
condition occurs.

POP: The process of deleting (or removing) an element from the top of stack is called POP operation. After
every pop operation the stack is decremented by one. If there is no element in the stack and the pop
operation is performed then the stack underflow condition occurs.

STACK IMPLEMENTATION

Stack can be implemented in two ways:

1. Static implementation (using arrays)
2. Dynamic implementation (using pointers)

Static implementation uses arrays to create stack. Static implementation using arrays is a very simple
technique but is not a flexible way, as the size of the stack has to be declared during the program design,
because after that, the size cannot be varied (i.e., increased or decreased). Moreover static implementation
is not an efficient method when resource optimization is concerned (i.e., memory utilization). For example
a stack is implemented with array size 50. That is before the stack operation begins, memory is allocated
for the array of size 50. Now if there are only few elements (say 30) to be stored in the stack, then rest of
the statically allocated memory (in this case 20) will be wasted, on the other hand if there are more number
of elements to be stored in the stack (say 60) then we cannot change the size array to increase its capacity.
The above said limitations can be overcome by dynamically implementing (is also called linked list
representation) the stack using pointers.

STACK USING ARRAYS

Implementation of stack using arrays is a very simple technique. Algorithm for pushing (or add or insert) a
new element at the top of the stack and popping (or delete) an element from the stack is given below.
Algorithm for push

Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which will hold the data
items. TOP is the pointer that points to the top most element of the stack. Let DATA is the data item to be
pushed.

1. If TOP = SIZE - 1, then:

(a) Display “The stack is in overflow condition”
(b) Exit

2.TOP=TOP +1

3. STACK [TOP] = ITEM

4. Exit

Algorithm for pop

Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which will hold the data
items. TOP is the pointer that points to the top most element of the stack. DATA is the popped (or deleted)
data item from the top of the stack.

1. If TOP <0, then

(a) Display “The Stack is empty”

(b) Exit

2. Else remove the Top most element
3. DATA = STACK[TOP]

4. TOP=TOP-1

5.EXxit.

